Unbiased Estimation of Causal Effects under Network Interference
Daniel L. Sussman — Statistics Department at Harvard University

Questions
- How can one account for interference between units in an online social network experiment?
- What are the collection of unbiased estimators for causal effects and how can one choose among them?
- How do different aspects of the potential outcomes and the network impact performance?

Potential Outcomes Framework (Neyman-Rubin Causal Model)
- An allocation is a vector of \(\{0, 1\} \)-treatments assignments, \(\mathbf{z} = (z_1, z_2, \ldots, z_n) \in \{0, 1\}^n \).
- Design is a probability distribution \(p \) on \(\{0, 1\}^n \), with \(\mathbf{z}^{obs} \sim p \).
- For allocation \(\mathbf{z} \), the outcome for unit \(i \) is \(Y_i(\mathbf{z}) \).
- Causal estimand is some function of the potential outcomes.
 - e.g. the average effect of total treatment is \(\frac{1}{n} \sum_{i=1}^{n} Y_i(1) - Y_i(0) \).
 - Core challenge of causal inference is only \(Y_i(\mathbf{z}^{obs}), \ldots, Y_n(\mathbf{z}^{obs}) \) are observed.

What is network Interference?
No Interference (SUTVA) \(Y_i \) depends only on \(z_i \).
Neighborhood Interference Assumption \(Y_i \) depends only on \(z_i \) and \(z_j \) for \(j \) in the neighborhood of \(i \).
- Neighborhood is given by a (directed) network \(g \in \{0, 1\}^{n \times n} \).

Additional Assumption
- Additivity of Main Effects Effect of own treatment and neighbors' treatments are additive.
- Additivity of Interference Effects Effects of each neighbor are additive.
- Symmetrically Received Interference Outcome only depends on number of treated neighbors.
- Symmetrically Sent Interference Effect of treatment of unit \(j \) is the same for each unit with \(j \) as a neighbor.

An example parameterization: SANIA
If we assume additivity of main effects and symmetrically received interference effects:
\[
Y_i(\mathbf{z}) = \alpha_i + \beta_i z_i + \Gamma_i(d_i^z)
\]
where
- \(\alpha_i \in \mathbb{R} \) is the baseline outcome,
- \(\beta_i \in \mathbb{R} \) is the “direct treatment effect”,
- \(\Gamma_i : [n-1] \rightarrow \mathbb{R} \) is the interference effect function, and
- \(d_i^z \) is the number of treated neighbors of \(i \).
Suppose we want to estimate \(\bar{\beta} = \frac{1}{n} \sum_i \beta_i \).

When do unbiased estimate of \(\bar{\beta} \) exist?
We consider linear estimates of the form
\[
\hat{\beta}_w = \sum_i w_i(z^{obs}) Y_i(z^{obs}).
\]

Proposition: LUEs exist under SANIA if and only if for each \(i \in [n] \) there exist allocations \(\mathbf{z}, \mathbf{z}' \) such that \(p(\mathbf{z}) > 0, p(\mathbf{z}') > 0, d_i^\mathbf{z} = d_i^{\mathbf{z}'} \), \(z_i = 1 \), and \(z_i' = 0 \).

Minimum Integrated Variance LUEs
- We propose minimum integrated variance (MIV) LUE for some “prior” distribution over the parameters \(\alpha_i, \beta_i, \Gamma_i \).
- For priors with independence across units, the MIV LUE is Horvitz-Thompson like, with inverse propensity score weighting.
- For priors where parameters are equal across units, the MIV LUE is similar to a naive estimate, where one takes the difference of means between the treatment and control groups, stratified on the number of treated neighbors.

Figure: Mean square errors on the log scale versus the number of units, for dense graphs and sparse graphs. Independent is a MIV LUE where all parameters are independent. Equal is a MIV LUE where parameters are equal across units. Naive and Horvitz-Thompson are the two standard estimators under no interference and Stratified Naive an average of naive estimators conditioned on the number of treated neighbors.

This is joint work with Edo Airoldi, Vinish Karwa, and Alexander Volfovsky.